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ABSTRACT: The Lagrangian formalism for the N = 2 supersymmetric sinh-Gordon model
with a jump defect is considered. The modified conserved momentum and energy are
constructed in terms of border functions. The supersymmetric Backlund transformation is
given and an one-soliton solution is obtained.

The Lax formulation based on the affine super Lie algebra sl(2,2) within the space split
by the defect leads to the integrability of the model and henceforth to the existence of an
infinite number of constants of motion.

KEYWORDS: [ntegrable Hierarchies, Integrable Field Theorieg.



mailto:leandroy@ift.unesp.br
mailto:jfg@ift.unesp.br
mailto:zimerman@ift.unesp.br
http://jhep.sissa.it/stdsearch

Contents

Introduction

=

=

[\
-

Lagrangian description

Cu o

Backlund transformation — One-soliton solution

=

Zero curvature formulation

B = =
s

Backlund transformation for N = 2 super sinh-Gordon

o8]

E

Explicit expressions for M and N

s
.

1. Introduction

In reference [[] a quantum theory of free bosons and free fermions subject to an inter-
nal boundary condition (jump defect) preserving the integrability was considered. More
recently a classical Lagrangian approach was proposed for certain class of non linearly in-
teracting bosonic fields [f—f]. The authors have considered a class of systems described
by internal boundary conditions corresponding to Backlund transformations and showed
to preserve integrability. Such framework was generalized in [[f to include both bosons
and fermions interacting in a non linear manner. Specifically we have considered the super
sinh-Gordon model with N = 1. The border functions were constructed and shown to give
rise to Backlund transformations. The integrability of the system in the presence of this
kind of defect was considered in terms of zero curvature representation.

The N = 2 super sinh-Gordon model was proposed in [, []] using superfield formalism.
Much later, a systematic construction was developed from the algebraic formalism point
of view where the N = 2 super sinh-Gordon equations appears to be a member of an
integrable hierarchy [§, fl]. The description of integrability in terms of an affine algebraic
structure has provided a neat universal framework from which the dynamics, conservation
laws, soliton solutions, etc can be constructed and studied. Following the same line of
reasoning, supersymmetry transformation was also incorporated into the framework (see
e.g. B [) associated to half integer gradations.

The purpose of this paper is to extend the results obtained in [f] for the N = 2 super
sinh-Gordon model. In section 2 we discuss the Lagrangian formalism introducing the
jump defect in terms of the border functions. These are defined by a modified momentum
conservation which is consistent with the Backlund transfomation for the N = 2 super
sinh-Gordon. The presence of the defect require modification of the conserved energy



of the system. In section 3 we extend the construction of Backlund transformation of
ref. [L{] in terms of super fields to the N = 2 super sinh-Gordon. We also write down the
the Backlund transformation in components and obtain a one-soliton solution. These are
invariant under the N = 2 supersymmetry transformation. In section 4 we present the zero
curvature formulation in terms of an affine si(2,2) super Lie algebra. By introducing two
regions around the defect, we explicitly construct, in a closed form, a gauge group element
connection the Lax pair in the overlap region. This fact guarantees the existence of an
infinite set of conservation laws.

2. Lagrangian description

The starting point is the Lagrangian density describing the N = 2 super sinh-Gordon
theory with bosonic ¢1,¢; and fermionic 1,1, X1, x1 fields in the region < 0 and
corresponding ¢s, o and g, 19, X2, X2 for x > 0,

1 1 A
Ly = 5(0u6p)” = 5(0u6p)” + 20p0udy + 20pOuty + 2001ty — 2000y

1 1
_5(8:10901))2 + 5(81%90;0)2 - 2)2;0615)21) - 2>Zpam>2p - 2XpatXp + 2Xp8:vXp
—16(1/1p1/;p + XpXp) cosh ¢, cosh ¢, — 4 cosh(2¢p)

+16(¥pXp + XpWp) sinh o, sinh ¢, + 4 cosh(2¢,), p=1,2. (2.1)
We shall now consider the system with a defect at the origin (x = 0) described by
L=0(—z)L1+0(x)Las+0(x)Lp (2.2)
where

Lp = 1/2(¢20ip1 — p10¢h2) — 2n11ba — 211ba + (7 (i
—1/2(p20pp1 — p10p02) + 2x1X2 + 2X1X2 + (7 Ol
+B0(¢p7 (10;0) + Bl(@p, 90]07 ¢p7 Xp7 T;Epa )Zpy 4.1_7 Cf—) (23)

The boundary functions B = By 4+ By describe the defect and Cli are fermionic auxiliary
fields. Notice that they describe the effect of the jump defect on the fermionic fields
generalizing the N = 1 case [[J] where one auxiliary field appears.

The equations of motion are

(02 — 07)¢, = 8sinh(2¢,) — 16(1ptp + XpXp)sinhe,coshp,
+16(¥pXp + XpWp)sinhp,coshe,

(02 — 07)pp = 8sinh(2¢p;,) + 16(1p1p + XpXp)sinhpp,coshe,
—16(pXp + Xpp)sinhé,coshep,

(0 — B¢ )by = —dpycoshp,coshyp, + 4x,sinhp,sinhep,

(0 — O¢)xp = —dappsinhg,sinhyp, + 4y,coshg,coshep,

(O + O)pp = —4tppcoshepcoshy, + 4xpsinhgy,sinhy,



(Oz + Or)Xp = —41ppsinhe,sinhe, + 4y ,ycoshp,coshe, (2.4)

where p = 1,2 corresponds to x < 0 or x > 0 respectively. These equations are invariant
under the supersymmetry transformation,

8(dp = 0p) = 2(Up F Xp)ex
S(Yp £ xp) = —1/2(0x + O)(dp F pp)ex,
0(vp £ Xp) = 2sinh(¢p £ pp)ex. (2.5)

where €4 are fermionic parameters. In x = 0 we have,

Orp1 — Orp2 = —04, B, Op2 — Opp1 = 04, B,
Ozp1 — Opp2 = 0, B, Opp2 — Opp1 = —0,, B,
Y — Py = —%&MB = —%&sz X1 — X2 = %axlB = %@CQB
151+1Z2=%%13=—%3@B, >21+>22=—%3213235sz,
Gy = —%8<1+B, O¢y = —%an (2.6)

The canonical momentum P, given by
0
P- / (00610061 — 2010001 — 2610581 — Bpp10upr + 21001 + 2x100x1) d
+ / (0u20urs — 202000 — HnDyths — Doiprdrps + 2X200 X2 + 2x20ux2) da
0

(2.7)

is not conserved in time due to the presence of the defect. Instead we find after making
use of the equations of motion,

. 1 1 1 1 -
P = [5(3t¢1)2 - 5(3#,01)2 + 5(5x¢1)2 - 5((%901)2 — 20101 — 2910411
+2X10:X1 + 2x10:x1 — 4cosh(2¢1) + 4cosh(2¢1) + 16(2P191 + x1X1)coshepcoshepy

—16(¢1x1 + Xlﬂl)Sinh%Sinh%] - [(1 — 2)]
x=0

=0

Factorizing By = B(()+) + B(()_) and B; = B£+) + B£_), where ¢4 = ¢1 = ¢o, @+ =
(1 £ g, -+ such that

B(()+) = B((]+)(¢+7 (10-1-)7 B(()_) = B((]_)(qb_’ (’D_)
B™ = BT (4, 04, 04, X4 T ), By =B (- oo o X (T CG) (28)

and using egs. (2.6), we define the modified momentum

P =P+ |BS"Y — BT + B — B{T + 2014 — 2019 — 2x1%2 + 2v1x2 | le—0 (2.9)



which is conserved in time provided the border functions By and B satisfy
Og., B(()+)8¢7 Bé_) —0py B(()—H@SL Bé_) = 4sinh ¢4 sinh ¢_ — 4sinh ¢ sinh_  (2.10)
and
00, By 05_B) 4 0y_By 09, B — 0, B5V0, BT — 0, B0, B
+d,,BMa, B —a, BMa, B - %(aq B{o,
= =203y + P+ XX+ FXX)A = 20030+ XX XX A
F2(4 X + Do X— + X4+ + X ) A+ 2(Y X + Xt + X+ + X ) A

+B{ +0.. B9, B{)

(2.11)
where
At = cosh (#) cosh (ﬁi) =+ cosh (Lr ; ¢_> cosh <7(’0+ ; (’0_>7
Ay = sinh (#) sinh (#) + sinh (%) sinh <L 5 "”‘), (2.12)

The energy of the system with the defect is given by

0 o)
E = / dx Hy +/ dx Ho,
—00 0

1 1 1 1 AT
Hy = |5(000p) + 5(00)” = 5(9e00)” = 5 (Orpp)” = 2 0utly + 2050y (2:13)

where

+2xp02 Xp — 2XpOxXp — 16(71)1)7[);0 + X;IJ)_CP)COSh‘:Dp coshgy,

+16(¥pXp + XpWp)sinhep, sinhe, + 4cosh(2¢,) — 4cosh(2¢,) |, p=1,2

It follows after using the equations of motion (R.4) that

dE

F [0:010:01 — Oup10pp1 — 2010401 + 2¢101h1 + 2x10ix1 — 2x10ix1 ],

— [0 020102 — DuipaBripy — 20020432 + 220,102 + 2x20;x2 — 2X20¢X2) ,_y -
Inserting the Backlund transformation (R.6) we can define the modified conserved energy,
£ =E+ [B— 2192 + 2x1x2 — 29192 + 2X1X2] |2—0, (2.14)

where B = B + B{™) + B{Y + B,
Equation (R.10) has the following solution

203
Bé+) = Bé+)(<l5+790+) = 5—23 (cosh ¢y — coshpy ),
- - 2
B = B (6o ) = 5% (cosh¢_ — cosh_). (2.15)



The solution of (R.11]) is verified for

B(+ = \/—Cl <—ﬁ3(¢+ —X+)COSh%(¢+ +90+)>

\Zf frgl (—ﬁ:a(% + X+) cosh %(m - so+)> , (2.16)
B fcl <52<w_+x_>cosh§<¢_—go_>)
56t 5 (- — 3o 0= + o0 ) (2.17)

where 1, 82 and (3 are arbitrary constants.
The solution given above also verify the following identities

(05, BP0, BT + 0, BTo,, B~ (0,, B0, B +o, B{a,, B (2.18)
=20 Y+ XX XX A+ 2084 X+ X+ XY+ XY

%(ag;Bi_)aniﬂ+8<1+B£_)8C;B£+)) = 20— X XA = 2P X X ) A
(2.19)
(96, B0y B — 0, BP9, B{7) =0 (2.20)
(V-4 + X-X+)As — (VX4 +Xx-P4)A¢ = 0 (2.21)

In analogy with ref. [f]] where we have dealt with the N = 1 case, the space derivatives
of Cli, ie. 890{11 can be obtained by requiring compatibility of eqs. (B.6) with (£.4) with B
given by (2.1§)-(B.17). Explicit expressions are given in (B.2) and (B.24) in consistency

with the Backlund transformation where the auxiliary fields Cli appear in a natural manner.

3. Backlund transformation — One-soliton solution
Introducing
1 1 _
8225(8:0—1—@), 8525(&—850), z=x+t, Z=t—=zx (3.1)
we define, according to ref. []], the super fields

Yt =tz +0Ty (T zN) + 0ty (1, z2h) + 00T FT (2T, 2T)
T =0 (2,2 )+0 ¢ (z 2 )+ 0 YT (27,27 )+0 0 F (27,2)

where
S N
2 2
and the super derivatives
0 1 - o 1.
0 1. -~ 0 15,
D_ = - +29 0., D_ = 50— +29 0z,



The equations of motion are then given by [f]
D,D, Yt = gsinY", D_D_ Y~ =gsinYt (3.2)
where ¢ is a constant. In components we find for the first equation (.9)
FT = gsinn~ Oz~ = geosn Y
04" = —gcosn Yt 0.0:n" = —gcosnT FT — gsing Tyt
while for the second equation (B.J) we have

F = gSiD?]+ Ozt = 900577+7Z_
00T = —gcosntpT  0,0:m = —gceosnt Ft — gsinpTy g

The superfields T+ e T~ are chiral and satisfy
D+T_ — D+T_ — 0, D_T+ - D_T+ - 0 (33)

Extending the procedure given in [[[(], we propose for the first eq. (B.9) the following
Backund transformation

DLYH = DyYE + BiFicos (%) (3.4)
DyYF = —DyY + BoFacos (%) (3.5)
where F; and Fy are auxiliary fermionic superfields, §; and (3, are arbitrary constants.
From
(DyDy + D Dy )Y{ =0 (3.6)
we obtain
DD, YJ = gsinT, (3.7)

if the auxiliary superfields F; and F; satisfy

A I St ) 29 . (YL + 7Ty
DiFi = Isin (L2 DiFo=—Fsin (LT 72 .
+F1 3 sin < 5 +F2 3 sin 5 (3.8)
For the second equation (B.9) consider the following transformations
T4+ 15
D_Y7 = D_T; + B3Gicos (%) (3.9)
_ _ TH 1+
D_Y{ = —D_Y5 + B4Gacos <%> (3.10)

where G and Gs are auxiliary fermionic superfields and (B3 and (4 are arbitrary constants.
Similarly, from

(D_-D_+D_D_)Y] =0 (3.11)



we obtain the second equation
D_D_Y; = gsinT;'

provided G; and Go satisfy the following conditions

- 2 Ti -3 2 T +717
D_G = ﬁ—Zsm <%> D_G, = —ﬁ—ZSI <%> (3.12)

In the appendix A we derive further compatibility relations involving the Fermionic
auxiliary superfields. These are written explicitly in components and provide algebraic
relations like ([A.7) also.

Choosing g = 2, redefining fields

my —i(dp £ op), Uy —iV2( ), Uy —iV2(hpEN), p=1,2. (3.13)
and denoting
£ = ¢s T s, \I’gi) = s = Xs, \I’gi) = T;Es tXxs, s== (3'14)

where ¢+ = ¢1 &2, @+ =1 T2, Y =112, X+ = x1E X2, - In components
the Backlund transformation reads

: =) ()
o\ (@ _
Dppy — Dypy = 2\[ [ 52511111( > ) T 1 gysinh (%) v

. (+) (=)
1 ﬁl . q)_ — (_) . (I)+ (+)
— hl— |V '+ h|—/— |V
2 \/, ﬁs [ (2 sin ( 5 > (3 sin < 5 b

—Zﬁsinh(qﬁl — ¢9) — Zﬁ—ﬁgsinh((bl + ¢2) (3.15)
3 2
~ )\ _ )
Op o — Opp1 = QZWCI_ [—[32 sinh (?) \I’(_+) — B3 sinh (%) \IJSF_)
. (I)(_+) o (I)(_)
—I—;W% - [—ﬁz sinh (T) g - (33 sinh <%) \IJS:F)
—%Sinh(% — ¢2) + Zﬁ—ﬁjsmh(ﬁbl + ¢2) (3.16)
o7 ) ()
am¢1—at¢2:2f [ ﬁgSlﬂh( 5 >\I’_ —ﬁgSlﬂh( )\If
' o) )
2\1/_% [62 sinh <?> o) 4 (3 sinh < ; ) \II(+
—%Sinh(wl — ) — %sinh((pl + 2) (3.17)

B3 B2

. ) (+)
7 . o — . d _
By s — Do = ﬁgl [_52 sinh (T) ¥ 4 By sinh (?) v




2

~22siubp — oa) + 2l sin(er + ) (3.18)

Y1 — g = —%53({005}1 <§> - ﬁﬂleCOSh (?) (3.19)
X1— X2 = —%ﬁﬁg{fcosh <§> + %ﬁﬁfcosh (g) (3.20)
Y1+ 1Py = —%ﬁgg_cosh <§> - ﬁﬁlggfcosh <%+)> (3.21)
X1+ X2 = ﬁﬁg{fcosh (% - %&%g"cosh (g) (3.22)
¢ = —i2\/§5f;2 cosh (g) \I’S:) + ichosh <(I)(£_)) g (3.23)
oGy = —i%cosh (%) \I/S:r) + izgfcosh (@g)) g (3.24)
(= —i2\/§5f;2 cosh (g) \I’S:) - i2fcosh <(I)(£_)> g (3.25)
Byl = —i%cosh (g) o i2gcosh (qf)) ) (3.26)

Notice that the above Backlund transformation can be re-obtained from the equations

of motion (R.6) with B given by (B.17), (B-16) and (B-17)*, that is

. =) (+)
T iRl - P _
B = ﬁgl [62 cosh <T> \If(_+) — B3 cosh <%> \IJSr )

. (+) (=)
2 51 (I)_ —(_ ()
+EEC1+ [ﬁ2 cosh <T> \If(_ ) _ (3 cosh <%> \I’S:r)

+%cosh(¢1 — ¢2) + %COSh(QSl + $2)

O3 Ba
—%cosh(gpl — p9) — 2—ﬁ?’cosh(gpl + ¢2) (3.27)
O3 o

The above Backlund equations are also invariant under N = 2 supersymmetry transfor-
mation (R.H). In order to obtain the one-soliton solution let us consider ¢g = py = 1y =
X2 -+ = 0. Since the one-soliton solution contains only one Grassmann parameter the
product of any two Fermi fields vanish and hence the Backlund equations reduce to a set

The compatibility of eq. (E} with () require 3132 = —8



of two decoupled bosonic sinh-Gordon for ¢ and 1. In this case we have
+ _ + + _ +
0:(;- = A_(coshey + coshepy)(] 0z¢7 = —A4(coshegy + coshpy) (] (3.28)

where Ay = (% + %) Knowing ¢; and ¢; we can integrate (B.2§) to construct the

auxiliary fields Cli and hence the fermionic fields ¥, x1, - - .
The solution for ¢; and ¢ is then

1+ 2bip
pr=p1=In|—2—
1—1bip

where by is an arbitrary constant and
pL = 62(71+Vf1)$+2(71—Vf1)t
The above solution satisfy the equation
(92 — 87)¢1 = 8sinh(2¢1)
Integrating (B.2§) for Cli and parametrizing

B3 = =712, By = i2V/2

we obtain the following solution

- C171P1 + -

Cl = 1.9 9 Cl :’YlC1
1= 3bint

Y1 = (1 — coshey)(y, Y1 =1

X1 = —(1 + coshey)(; X1 = 71X1

where ¢y is a Grassmann constant. Using the above equations together with the eqgs. of
motion for the fermions we find

Y1(0y — Op)h1 = —dabicosh®py + 4xisinh?¢y
Y1 = —4irsinh?¢; + 4xicosh?ey

1 _ _

7@&@Wp:4wmﬁm+ﬁﬂm%l
1

1 _

7—(6% + 0y)X1 = —4diprsinh?¢y + 4yicosh’ey
1

from where one can verify

_ 1 _

7 (0p — O = %(am + 0
1

Y1(0p — O)x1 = %(@c +0)x1



4. Zero curvature formulation

In this section we introduce the Lax pair for the N = 2 super sinh-Gordon model in
terms of generators of the affine sl(2,2) super Lie algebra (see section 3 of ref. [[f for
explicit structure of generators). The Lie super algebra si(2,2) is specified by the following
Bosonic, a7, asg and Fermionic, as simple roots

a;=e; —e, az=fi—fo and ar=ex— fi, ei-ej=—fi-fj =205 (41)

respectively.
The Lax pair for the system described by eq. of motion (2.4) is given by

1 1 1 1
AP = —Z0udph1 — S0upphs + v AP —50u0ph — 50upphs + v (4.2)

where
V:I(:p) = <—€_¢p + %eqﬁp) Ea1 + (_>‘6¢p + e_d)p)E—al
+(_)\e—80p + e‘Pp)Eag + <_6<Pp + %6_%)) E—a3 + (_)\1/2 + )\—1/2)1
44 —_e—%(@?—@p)(q/}p + Xp))‘_1/4 T e%(‘i’p—@p)(q[}p + )Zp))\_g/ﬂ Eo+as
+i __e%(fbp—sop)wp )N+ e—%(%—wp)(ﬂjp + Xp))\l/‘l} E o) —ay
+i —e%(%—s@p)(% + Xp))‘3/4 + e—%(%—%)@p + )Zp)Al/4] )
+i _e_%(gbp_@p)(qﬁp + Xp))\_l/4 + eé(d)p_wp)(ﬂ_)p + XP)A_3/4] E-az—a;
+1 ——6_%(¢p+@p)(¢p - Xp))‘l/4 + eé(qu—i_@p)(@p - Xp))‘_l/ﬂ Eaitaz+as
i [—e3(@ren) (3, — xp) A4 £ e 3 (0ten) (4, — 5, )A7Y 4] E o —as—as

i [e30rten) (4, — ) A4 £ =3O o) (5 x) A_1/4} 5,

+i —e_%(qﬁp'wp)("‘/’p - Xp))‘l/4 + 6%(¢p+¢p)(7]’p - XP))‘_IM} E-ag

Here h; = «; - H, i =1,2,3 are the Cartan subalgebra generators, I = hy + 2hg + h3 is
the identity matrix and E, denote the step operators. Notice that those step operators
associated to a root « containing the simple root «g are fermionic in nature whilst the
remaining are bosonic.

In order to describe the integrability of the system we follow [ and split the space
into two overlapping regions, namely, x < b and x > a with a < b. Inside the overlap
region, i.e., a < x < b introduce the following modified Lax pair

. 1
Ail) = Ail) + §H(x —a)|(0x01 — Orp2 + Oy, B)h1 + (01 — Orpa — Oy, B)hs

1 1
+(1 — P2 + §8¢IB)EQQ +(x1—x2 — §8X13)Ea2+a3

— 10 —



1 _ 1
+<3th_ + §8g B> Ea1+0c2 + (atcl + §ag1+B)Ea1+a2+a3}

AWM = g(a — z)AD

. 1
A§2) = A§2) + 59(6 —x) [(aﬂﬁz = i1 = 9, B)hi + (O p2 — Orip1 + Oy B) g

_ _ 1 1
—|—<¢1 + b2 — 5%13) E_o, + <>21 + X2+ §3>ng>E—a2—a3
1 _ 1
+<8tgf_ + 5841* B> E—oa—az + <8tC1 + §8<frB> E—oe1—a2—o¢3:|

A2 = gz —b)AP

Within the overlap region the Lax pair denoted by suffices p = 1,2 are related by gauge
transformation,

oK = KA® - AVEK.
Decomposing K into
K = ebbuhrt houhs - Yonhs o (43)
we have
(g, Bha — 8,5, Bh3)K + K(0p, Bh1 — O, Bh3) = 2KM — 2NK — 20, K
where
M= e—%mhl—%gplhgVf)e%mhﬁ%wlha

N = e—%dhhl—%wzh:’,v

£1)€%¢2h1+%¢2h3 (4.4)

which are explicitly displayed in the appendix. The solution for K is then given in the
closed form

K =0CI- %C()\_lEal + E_py + Eoy + X 1E_y,)
2

C _
_EZﬂ)\ 3/4<i|—(Ea1+a2 - )\E_QI_C‘Q - )‘Ea2+a3 + E—az—as)
C
22

and C' is an arbitrary constant. The existence of the gauge transformation ({.§) provides

+ ﬂS)\_l/4C:L_(_Ea2 + By + Faytastas — E—Oq—az—ag) (4-5)

a generating function for an infinite set of constants of motion (see [J]) strongly indicating
the integrability of the system.

The existence of Backlund transformations for bosonic and fermionic systems provide
an interesting class of integrable models whose mathematical structure deserves further
investigation. For instance its bi-hamiltonian properties (see for instance [[[4]).

The study of the quantum bosonic sinh-Gordon model with defects was explored in [[[2,
13]. The extension for the N =1 and N = 2 super sinh-Gordon model with jump defects
is also of interest.

These problems are under investigation.

— 11 —



A. Backlund transformation for IN = 2 super sinh-Gordon

Consider the fermionic superfields i, 5 and Gy, Go introduced in (B.4)-(B.5) and in (B.9)-
(B.10) respectively written as

Fi=Dy(E]), F=Dy(53) G =D(E]), G=D_(E3)
where

B = (55, 70 F 05T 2 + 05 G (R, ) + 050 gy (o, 2)

Sy =y (5, F0) + 056 (25, 7) + 0756 (27, 27) + 0707y (2%, )

are chiral superfields. In components we find

_ 2 T =15
D F = ﬁ—i]sin <71 2 >

2
\
(=) () =)
29 . (1= g n-"\ - g n-
g = Esm <T> , 0:¢ = ECOS <T> ¢(_+), 9.6 = _ECOS (T) 7/)(_+)a
g "\ o g "\
8:0.q1 = _ECOS <_T> — ﬁsin <_T) (CANRS (A1)

) ()

where we denote ng_: =n £ny,ny = nf + 775r , similarly for the other fields.

+ _ v+
3
U
(+) (+) (+)
— 6—gsin (%) . 0u( = g cos (%) 0O, 0 = _51005 ("‘7) i

- 12 —



si
B4 2
U
+) (+) (+)
2 n n - - n -
Py = ﬁ—“ZSl <L> ; 0:§] = 54008 <+T> Sr ), 0:&5 —ﬁ—cos <+T> Sr )
(+) ()
N . (m o) (=
0:0.p] = 9 cos <+T) FJ(:F) — %@sm (%) 1/)5_ )1/15_ ) (A.2)

D Y] = DyY3 + B1Ficos <¥>
U

(=) (=) (=)
) = Bi¢ eos (772 > , 9. = %Sin (%) Cf_T,Z)_,_ + 310.q; cos (7745 >

(=)
F£+) = ﬁlq;cos (%)

D YT = —=DyY3 + BaFacos <%>

(=) (=)
¢Sr_) — @g;cos <77_T> ) agn(j) = @sm (777) 531/19) + 528;])?003 (%)

(
F( ﬁgp2 cos <T>

+ +
D_Y{ =D_T, + 33G;cos <w>
4
(+) (+) (+)
_ n - . (n _ (- - U
) = B3¢ cos (%) . o) = %sm (%) ¢l + Bs0.q; cos (%)

77(4')
) = B3G5 cos %
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+ ot
D_Y] = —D_Y5 + B1Gacos <%>

2 2

(+)
Fj__) = [(4p5 cos <TLT)

Acting D_ in eq. (B4) and using eq. (B-10), we obtain

() ) (-) _ P ) 7(-) n
Py = B4&y cos <;> , dzny ' = —-sin <;> Ey 2 + [40zpq cos (

F1G2=0
which is satisfied when
G =&, @ =0pr, py=-04f, 0.5 =0
Similarly, acting with D_ in eq. (B.4) and making use of eq. (B.9),we obtain
F261 =0
which is satisfied when
(=&, p=-0a7, a3 =0pf, 0. =0

Making use of eq. (A.J) and ([A.]), we find

) =)
agazqf = —0zp, = —%cos <77_T> FE_) — isin (n;) 1[)(_+)1Z(_+)

Acting 0; in the first eq. (A.9) we obtain

(+)
Ozp; = %32 [sin (%)]

In order to (A.H) be compatible with ([A.6), it is necessary that

P12 = B304

B. Explicit expressions for M and N
Here we give detailed expression for M and N of eq. (f.4)

M=a Ey +biE_ +c FEoy +dyE oy + A1
0P g t0n — BYE g 0n + B Eayras + 0P E oy gy
AP B vontas — 02 E o —ap-ag + 02 Eay + Y2 E_q,

N = ayEoy +b_F gy + ¢ Bay +d_E_oy + Ay 1
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@

2

)

(A.3)

(A.4)

(A.6)

(A7)



_ag_l)Eal—l—ag - /8(_1)E—011—Oc2 + 5_(:)Eoc2+a3 + a(_l)E—az—ocg

_'Y-(g-l)Em—f—az-i-ag - 5(—1)E—a1—a2—03 + 5—(4-1)Ea2 + ’Y(—l)E—az

where
a_ = (—e % + A7l ?), by = (—Ae?* 4 %),
c_ = (=Ae” Pt 4 e %), dy = (—eP+ + X7 le¥),
ag) =1 e_%¢(+7)(¢2 +x2) ANV £ e_%‘z’(:)(i/_)g + )Zg))\_3/4]
1) 1.(-) - _
B2 = i 35 (o x4 £ 3 (G 4 o)A
T 1) N C s
W =i €T3 (o — x2) AV £ T30 (g — Y2)A 1/4]
T 1) 1.0, -
553) — i [e29% (1hy — x2) A4 £ €39 (hy — X2) A 1/4}
)‘:I: — (_)\1/2 :l:)\—l/Q)
and
ar = (—e % + A7 le?), bo = (—Xe?* +e797)
cy = (—Ae™ Pt 4 e¥7), d_ = (et + X7 le7¥),
T 1,00 1) -
B =i ex% (P + x)N £ e300 (g +X1))‘1/4}
T 1P 1,00,
D = i[5 (g — )N 30 (g — )
T 1,0 N C S I
o) =i |39 (g — x)AY £ e 3 (4 — x1)A 1/4}
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